Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.
نویسندگان
چکیده
Nitrification in chloraminated drinking water can have a number of adverse effects on water quality, including a loss of total chlorine and ammonia-N and an increase in the concentration of heterotrophic plate count bacteria and nitrite. To understand how nitrification develops, a study was conducted to examine the factors that influence the occurrence of ammonia-oxidizing bacteria (AOB) in a chloraminated distribution system. Samples were collected over an 18-month period from a raw-water source, a conventional treatment plant effluent, and two covered, finished-water reservoirs that previously experienced nitrification episodes. Sediment and biofilm samples were collected from the interior wall surfaces of two finished-water pipelines and one of the covered reservoirs. The AOB were enumerated by a most-probable-number technique, and isolates were isolated and identified. The resistance of naturally occurring AOB to chloramines and free chlorine was also examined. The results of the monitoring program indicated that the levels of AOB, identified as members of the genus Nitrosomonas, were seasonally dependent in both source and finished waters, with the highest levels observed in the warm summer months. The concentrations of AOB in the two reservoirs, both of which have floating covers made of synthetic rubber (Hypalon; E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.), had most probable numbers that ranged from less than 0.2 to greater than 300/ml and correlated significantly with temperature and levels of heterotrophic plate count bacteria. No AOB were detected in the chloraminated reservoirs when the water temperature was below 16 to 18 degrees C. The study indicated that nitrifiers occur throughout the chloraminated distribution system. Higher concentrations of AOB were found in the reservoir and pipe sediment materials than in the pipe biofilm samples. The AOB were approximately 13 times more resistant to monochloramine than to free chlorine. After 33 min of exposure to 1.0 mg of monochloramine per liter (pH 8.2, 23 degrees C), 99% of an AOB culture was inactivated. The amounts of this disinfectant that are currently used (1.5 mg/liter at a 3:1 ratio of chlorine to ammonia-N) may be inadequate to control the growth of these organisms in the distribution system.
منابع مشابه
Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polym...
متن کاملDiversity of nitrifying bacteria in full-scale chloraminated distribution systems.
Chloramination for secondary disinfection of drinking water often promotes the growth of nitrifying bacteria in the distribution system due to the ammonia introduced by chloramine formation and decay. This study involved the application of molecular biology techniques to explore the types of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) present in several full-scale chlo...
متن کاملOccurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems.
Microbiological nitrification process may lead to chemical, microbiological and technical problems in drinking water distribution systems. Nitrification activity is regulated by several physical, and chemical, and operational factors. However, the factors affecting nitrification in the distribution systems in boreal region, having its specific environmental characteristics, are poorly known. We...
متن کاملOccurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms.
We studied the population dynamics of nitrifying bacteria during the development of biofilms up to 233 or 280 days on polyvinylchloride pipes connected to two full-scale drinking water distribution networks supplying processed and chloraminated surface water. The numbers of nitrifiers in biofilms were enumerated at intervals of 10-64 days by the most probable number (MPN) method at waterworks a...
متن کاملMonochloramine Cometabolism by Nitrifying Biofilm Relevant to Drinking Water
2016 © American Water Works Association JOURNAL AWWA JULY 2016 | 108:7 Chloramine use is widespread in US drinking water distribution systems as a secondary disinfectant, and its use is predicted to increase with the final implementation of the Stage 2 Disinfectants and Disinfection Byproducts Rule (USEPA 2005). Chloramination is beneficial from the perspective of controlling formation of regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 56 2 شماره
صفحات -
تاریخ انتشار 1990